Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells.

نویسندگان

  • Chandrani Sarkar
  • Debanjan Chakroborty
  • Rita Basu Mitra
  • Samir Banerjee
  • Partha Sarathi Dasgupta
  • Sujit Basu
چکیده

Vascular permeability factor (VPF)/VEGF is a potent multifunctional cytokine and growth factor that has critical roles in vasculogenesis and in both physiological and pathological angiogenesis. Because it has been recently shown that the neurotransmitter dopamine at pharmacological dose can inhibit VEGF/VPF-mediated microvascular permeability, proliferation, and migration of endothelial cells in vitro, we therefore hypothesized that endogenous dopamine may regulate the actions of VPF/VEGF in vivo. We report that VPF/VEGF-induced phosphorylation of VEGF receptor 2, focal adhesion kinase, and MAPK in the endothelial cells is strikingly increased in both dopamine-depleted and dopamine D(2) receptor knockout mice compared with normal controls, thereby indicating that endogenous dopamine regulate these critical signaling cascades required for the in vivo endothelial functions of VPF/VEGF. Together, these observations provide new mechanistic insight into the dopamine-mediated inhibition of the activities of VPF/VEGF and suggest that endogenous neurotransmitter dopamine might be an important physiological regulator of VPF/VEGF activities in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-1α stability and angiogenesis. ...

متن کامل

Tyrosine phosphorylation of the vascular endothelial-growth-factor receptor-2 (VEGFR-2) is modulated by Rho proteins.

The effects of Rho-specific modifying toxins on the tyrosine phosphorylation of endothelial cell proteins were investigated. Incubation of the cells with the Rho-activating toxin cytotoxic necrotizing factor 1 (CNF1) induced a marked increase in the tyrosine phosphorylation of a number of signalling intermediates of the vascular endothelial growth factor (VEGF)-mediated cascade, including focal...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

The neurotransmitter dopamine modulates vascular permeability in the endothelium

BACKGROUND Vascular permeability factor/Vascular endothelial growth factor (VPF/VEGF), a multifunctional cytokine, is a potent inducer of vascular permeability, an important early step in angiogenesis. It is known that the neurotransmitter dopamine can inhibit VPF/VEGF mediated angiogenesis, in particular microvascular permeability, but the effectors of this action remain unclear. RESULTS Her...

متن کامل

The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere).

Laulimalide, a natural product from marine sponges, is a microtubule-stabilizing agent that binds to tubulin at a site distinct from that of the taxoids. In the present study, we found that laulimalide inhibited human umbilical vein endothelial cell (HUVEC) tubule formation and vascular endothelial growth factor (VEGF)-induced HUVEC migration, key components of the angiogenic process. These occ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 287 4  شماره 

صفحات  -

تاریخ انتشار 2004